Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Res ; 55(1): 51, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622639

RESUMEN

Lyophilized Streptococcus spp. isolates (n = 50) from animal samples submitted to the diagnostic laboratory at the University of Connecticut in the 1940s were revivified to investigate the genetic characteristics using whole-genome sequencing (WGS). The Streptococcus spp. isolates were identified as follows; S. agalactiae (n = 14), S. dysgalactiae subsp. dysgalactiae (n = 10), S. dysgalactiae subsp. equisimils (n = 5), S. uberis (n = 8), S. pyogenes (n = 7), S. equi subsp. zooepidemicus (n = 4), S. oralis (n = 1), and S. pseudoporcinus (n = 1). We identified sequence types (ST) of S. agalactiae, S. dysgalactiae, S. uberis, S. pyogenes, and S. equi subsp. zooepidemicus and reported ten novel sequence types of those species. WGS analysis revealed that none of Streptococcus spp. carried antibiotic resistance genes. However, tetracycline resistance was observed in four out of 15 S. dysgalactiae isolates and in one out of four S. equi subsp. zooepidemicus isolate. This data highlights that antimicrobial resistance is pre-existed in nature before the use of antibiotics. The draft genome sequences of isolates from this study and 426 complete genome sequences of Streptococcus spp. downloaded from BV-BRC and NCBI GenBank database were analyzed for virulence gene profiles and phylogenetic relationships. Different Streptococcus species demonstrated distinct virulence gene profiles, with no time-related variations observed. Phylogenetic analysis revealed high genetic diversity of Streptococcus spp. isolates from the 1940s, and no clear spatio-temporal clustering patterns were observed among Streptococcus spp. analyzed in this study. This study provides an invaluable resource for studying the evolutionary aspects of antibiotic resistance acquisition and virulence in Streptococcus spp.


Asunto(s)
Antibacterianos , Infecciones Estreptocócicas , Animales , Antibacterianos/farmacología , Virulencia/genética , Infecciones Estreptocócicas/veterinaria , Filogenia , Streptococcus/genética
2.
J Med Virol ; 95(12): e29285, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38054545

RESUMEN

Despite a high vaccination rate, the COVID-19 pandemic continues with immune-evading Omicron variants. The success of additional antigenic stimulation through breakthrough infection (BI) and updated vaccination in overcoming antigenic imprinting needs to be determined. Participants in a long-term follow-up cohort of healthcare worker (HCW) vaccinee were categorized according to their infection/vaccination status. Anti-SARS-CoV-2 spike/nucleocapsid protein antibodies were measured, and plaque reduction neutralization tests (PRNTs) against wild-type (WT), BA.5, BN.1, and XBB.1.5 were conducted. The neutralization activity of intravenous immunoglobulin (IVIG) products was evaluated to assess the immune status of the general population. Ninety-five HCWs were evaluated and categorized into seven groups. The WT PRNT ND50 value was highest regardless of infection/vaccination status, and groups with recent antigenic stimulation showed high PRNT titers overall. Groups with double Omicron stimulation, either by BI plus BA.4/5 bivalent vaccination or repeated BI, exhibited significantly higher BA.5 and BN.1 PRNT to WT PRNT ratios than those with single Omicron stimulation. Overall group immunity was estimated to be boosted in January 2023, reflecting the effect of the BA.4/5 bivalent booster and additional BIs, but slightly declined in June 2023. A substantial increase in the antibody concentrations of IVIG products was noticed in 2022, and recently produced IVIG products exhibited a substantial level of cross-reactive neutralizing activity against emerging variants. Neutralizing activity against emerging variants could be enhanced by repeated antigenic stimulation via BI and/or updated vaccination. Overall group immunity was elevated accordingly, and IVIG products showed substantial activity against circulating strains.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Infección Irruptiva , Pandemias , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Antivirales , Vacunación
3.
J Infect Dis ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114088

RESUMEN

Immunocompromised COVID-19 patients were prospectively enrolled from March to November 2022 to understand the association between antibody responses and SARS-CoV-2 shedding. A total of 62 patients were analyzed and the results indicated a faster decline in genomic and subgenomic viral RNA in patients with higher neutralizing and S1-specific IgG antibodies (both P < 0.001). Notably, high neutralizing antibody levels were associated with a significantly faster decrease in viable virus cultures (P = 0.04). Our observations suggest the role of neutralizing antibodies in prolonged virus shedding in immunocompromised patients, highlighting the potential benefits of enhancing their humoral immune response through vaccination or monoclonal antibody treatments.

4.
J Med Virol ; 95(11): e29228, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009999

RESUMEN

There are limited data supporting current Centers for Disease Control and Prevention guidelines for the isolation period in moderate to severely immunocompromised patients with coronavirus disease 2019 (COVID-19). Adult COVID-19 patients who underwent solid organ transplantation (SOT) or received active chemotherapy against hematologic malignancy were enrolled and weekly respiratory samples were collected. Samples with positive genomic real-time polymerase chain reaction results underwent virus culture and rapid antigen testing (RAT). A total of 65 patients (40 with hematologic malignancy and 25 SOT) were enrolled. The median duration of viable virus shedding was 4 weeks (interquartile range: 3-7). Multivariable analysis revealed that B-cell depletion (hazard ratio [HR]: 4.76) was associated with prolonged viral shedding, and COVID-19 vaccination (≥3 doses) was negatively associated with prolonged viral shedding (HR: 0.22). The sensitivity, specificity, positive predictive value, and negative predictive value of RAT for viable virus shedding were 79%, 76%, 74%, and 81%, respectively. The negative predictive value of RAT was only 48% (95% confidence interval [CI]: 33-65) in the samples from those with symptom onset ≤20 days, but it was as high as 92% (95% CI: 85-96) in the samples from those with symptom onset >20 days. About half of immunocompromised COVID-19 patients shed viable virus for ≥4 weeks from the diagnosis, and virus shedding was prolonged especially in unvaccinated patients with B-cell-depleting therapy treatment. RAT beyond 20 days in immunocompromised patients had a relatively high negative predictive value for viable virus shedding.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Adulto , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Estudios Prospectivos , Vacunas contra la COVID-19 , Neoplasias Hematológicas/complicaciones , Esparcimiento de Virus , ARN Viral/análisis
6.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37848036

RESUMEN

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Asunto(s)
Síndrome Post Agudo de COVID-19 , Serotonina , Humanos , COVID-19/complicaciones , Progresión de la Enfermedad , Inflamación , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/patología , Serotonina/sangre , Virosis
9.
Front Med (Lausanne) ; 9: 988559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36314031

RESUMEN

Background: The impact of nirmatrelvir/ritonavir treatment on shedding of viable virus in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Methods: A prospective cohort study evaluating mildly ill COVID-19 patients was conducted. Virologic responses were compared between nirmatrelvir/ritonavir-treatment and supportive care groups. Risk factors and relevant clinical factors for shedding of viable virus were investigated. Results: A total of 80 COVID-19 patients were enrolled and 222 sputum specimens were collected. Ten patients were dropped during follow-up, and 33 patients in the nirmatrelvir/ritonavir and 37 in the supportive care groups were compared. The median age was 67 years, and 67% were male. Clinical characteristics were similar between groups. Viral loads decreased significantly faster in the nirmatrelvir/ritonavir group compared with the supportive care group (P < 0.001), and the slope was significantly steeper (-2.99 ± 1.54 vs. -1.44 ± 1.52; P < 0.001). The duration of viable virus shedding was not statistically different between groups. In the multivariable analyses evaluating all collected specimens, male gender (OR 2.51, 95% CI 1.25-5.03, P = 0.010), symptom score (OR 1.41, 95% CI 1.07-1.87, P = 0.015), days from symptom onset (OR 0.72, 95% CI 0.59-0.88, P = 0.002), complete vaccination (OR 0.09, 95% CI 0.01-0.87, P = 0.038), and BA.2 subtype (OR 0.49, 95% CI 0.26-0.91, P = 0.025) were independently associated with viable viral shedding, while nirmatrelvir/ritonavir treatment was not. Conclusion: Nirmatrelvir/ritonavir treatment effectively reduced viral loads of SARS-CoV-2 Omicron variants but did not decrease the duration of viable virus shedding.

10.
Emerg Microbes Infect ; 11(1): 2315-2325, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36006772

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant morbidity and mortality worldwide. Despite a successful vaccination programme, the emergence of mutated variants that can escape current levels of immunity mean infections continue. Herein, we report the development of CT-P63, a broad-spectrum neutralizing monoclonal antibody. In vitro studies demonstrated potent neutralizing activity against the most prevalent variants, including Delta and the BA.1 and BA.2 sub-lineages of Omicron. In a transgenic mouse model, prophylactic CT-P63 significantly reduced wild-type viral titres in the respiratory tract and CT-P63 treatment proved efficacious against infection with Beta, Delta, and Omicron variants of SARS-CoV-2 with no detectable infectious virus in the lungs of treated animals. A randomized, double-blind, parallel-group, placebo-controlled, Phase I, single ascending dose study in healthy volunteers (NCT05017168) confirmed the safety, tolerability, and pharmacokinetics of CT-P63. Twenty-four participants were randomized and received the planned dose of CT-P63 or placebo. The safety and tolerability of CT-P63 were evaluated as primary objectives. Eight participants (33.3%) experienced a treatment-emergent adverse event (TEAE), including one grade ≥3 (blood creatine phosphokinase increased). There were no deaths, treatment-emergent serious adverse events, TEAEs of special interest, or TEAEs leading to study drug discontinuation in the CT-P63 groups. Serum CT-P63 concentrations rapidly peaked before declining in a biphasic manner and systemic exposure was dose proportional. Overall, CT-P63 was clinically safe and showed broad-spectrum neutralizing activity against SARS-CoV-2 variants in vitro and in vivo.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Creatina Quinasa , Humanos , Ratones , Glicoproteína de la Espiga del Coronavirus
11.
Biomolecules ; 12(4)2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35454186

RESUMEN

In Saccharomyces cerevisiae, the p21-activated kinase Cla4p regulates polarized morphogenesis and cytokinesis. However, it remains unknown how Cla4p kinase activity is regulated. After pheromone exposure, yeast cells temporally separate the mitotic and mating programs by sequestering Fus2p in the nucleus until cell cycle completion, after which Fus2p exits to facilitate cell fusion. Previously, we showed that sequestration is regulated by two opposing protein kinases, Cla4p and Fus3p. Phosphorylation of Fus2p-S67 by Cla4p promotes nuclear localization by both activating nuclear import and blocking export. During mating, phosphorylation of Fus2p-S85 and Fus2p-S100 by Fus3p promotes nuclear export and blocks import. Here, we find that Cla4p kinase activity is itself down-regulated during mating. Pheromone exposure causes Cla4p hyper-phosphorylation and reduced Fus2p-S67 phosphorylation, dependent on Fus3p. Multiple phosphorylation sites in Cla4p are mating- and/or Fus3p-specific. Of these, Cla4p-S186 phosphorylation reduced the kinase activity of Cla4p, in vitro. A phosphomimetic cla4-S186E mutation caused a strong reduction in Fus2p-S67 phosphorylation and nuclear localization, in vivo. More generally, a non-phosphorylatable mutation, cla4-S186A, caused failure to maintain pheromone arrest and delayed formation of the mating-specific septin morphology. Thus, as cells enter the mating pathway, Fus3p counteracts Cla4p kinase activity to allow proper mating differentiation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Proteínas Quinasas Activadas por Mitógenos , Feromonas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
J Virol Methods ; 299: 114306, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34601000

RESUMEN

Considering the global impact of the coronavirus disease 2019 (COVID-19) pandemic, generating suitable experimental models is imperative. For pre-clinical studies, researchers require animal models displaying pathological features similar to those observed in patients; therefore, establishing animal models for COVID-19 is crucial. The golden Syrian hamster model mimics conditions observed in humans with mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, a golden Syrian hamster model of severe infection has not been reported. J2N-k hamsters are utilized as a cardiomyopathy model; therefore, we used cardiomyopathic J2N-k hamsters showing conditions similar to those of severe COVID-19 complicated with cardiovascular diseases, as patients with cardiovascular diseases exhibit a higher risk of morbidity and mortality due to COVID-19 than patients without cardiovascular diseases. Unlike that in golden Syrian hamsters, SARS-CoV-2 infection was lethal in J2N-k hamsters, with a median lethal dose of 104.75 plaque-forming units for the S clade of SARS-CoV-2 (A, GenBank: MW466791.1). High viral titers and viral genomes were detected in the lungs of J2N-k and golden Syrian hamster models harvested 3 days after infection. Pathological features of SARS-CoV-2-associated lung injury were observed in both models. The J2N-k hamster model can aid in developing vaccines or therapeutics against COVID-19.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Animales , Cricetinae , Modelos Animales de Enfermedad , Humanos , Mesocricetus , Pandemias , SARS-CoV-2
13.
Clin Microbiol Infect ; 28(4): 614.e1-614.e4, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34954127

RESUMEN

OBJECTIVE: Neutralizing antibodies are among the factors used to measure an individual's immune status for the control of infectious diseases. We aimed to confirm the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody levels in patients who had recovered from coronavirus disease 2019 (COVID-19). METHODS: Plasma donors in South Korea who had completely recovered from SARS-CoV-2 infection had follow-up testing to determine the persistence of neutralizing antibodies using a plaque-reduction neutralization test and ELISA. RESULTS: Of the 111 participants-aged 20-29 years, 37/111 (33.3%); 30-39 years, 17/111 (15.3%); 40-49 years, 23/111 (20.7%); 50-59 years, 21/111 (18.9%); 60-65 years, 13/111 (11.7%); male, 43/111 (38.7%); female, 68/111 (61.3%)-66.1% still had neutralizing antibodies approximately 9 months (range 255-302 days) after confirmation of the diagnosis. CONCLUSIONS: In this study we analysed the titre of neutralizing antibodies associated with predicting immune status in individuals with natural infection. Information about the persistence and change in levels of neutralizing antibodies against SARS-CoV-2 can be utilized to provide evidence for developing vaccination schedules for individuals with previous infection.


Asunto(s)
COVID-19 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Femenino , Humanos , Masculino , SARS-CoV-2 , Adulto Joven
14.
Viruses ; 13(12)2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960769

RESUMEN

We performed whole genome sequencing and genetic characterization of rabies viruses (RABV) detected in bats submitted to the Connecticut Veterinary Medical Diagnostic Laboratory (CVMDL) during 2018-2019. Among 88 bats submitted to CVMDL, six brain samples (6.8%, 95% confidence interval: 1.6% to 12.1%) tested positive by direct fluorescent antibody test. RABVs were detected in big brown bats (Eptesicus fuscus, n = 4), a hoary bat (Lasiurus cinereus, n = 1), and an unidentified bat species (n = 1). Complete coding sequences of four out of six detected RABVs were obtained. In phylogenetic analysis, the RABVs (18-62, 18-4347, and 19-2274) from big brown bats belong to the bats EF-E1 clade, clustering with RABVs detected from the same bat species in Pennsylvania and New Jersey. The bat RABV (19-2898) detected from the migratory hoary bat belongs to the bats LC clade, clustering with the eleven viruses detected from the same species in Arizona, Washington, Idaho, and Tennessee. The approach used in this study generated novel data regarding genetic relationships of RABV variants, including their reservoirs, and their spatial origin and it would be useful as reference data for future investigations on RABV in North America. Continued surveillance and genome sequencing of bat RABV would be needed to monitor virus evolution and transmission, and to assess the emergence of genetic mutations that may be relevant for public health.


Asunto(s)
Quirópteros/virología , Filogenia , Virus de la Rabia/genética , Secuenciación Completa del Genoma/métodos , Animales , Virus de la Rabia/clasificación
15.
Viruses ; 13(11)2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34834948

RESUMEN

We report the first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a 3-month-old dog in Connecticut that died suddenly and was submitted to the state veterinary diagnostic laboratory for postmortem examination. Viral RNA was detected in multiple organs of the dog by reverse transcription real time-PCR (RT-qPCR). Negative and positive sense strands of viral RNA were visualized by in situ hybridization using RNAscope technology. Complete genome sequencing and phylogenetic analysis of the hCoV-19/USA/CT-CVMDL-Dog-1/2021 (CT_Dog/2021) virus were conducted to identify the origin and lineage of the virus. The CT_Dog/2021 virus belonged to the GH/B1.2. genetic lineage and was genetically similar to SARS-CoV-2 identified in humans in the U.S. during the winter of 2020-2021. However, it was not related to other SARS-CoV-2 variants identified from companion animals in the U.S. It contained both the D614G in spike and P323L in nsp12 substitutions, which have become the dominant mutations in the United States. The continued sporadic detections of SARS-CoV-2 in companion animals warrant public health concerns about the zoonotic potential of SARS-CoV-2 and enhance our collective understanding of the epidemiology of the virus.


Asunto(s)
COVID-19/veterinaria , COVID-19/virología , SARS-CoV-2/clasificación , Animales , Prueba de Ácido Nucleico para COVID-19 , Connecticut/epidemiología , Perros , Femenino , Humanos , Mutación , Filogenia , ARN Viral , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Secuenciación Completa del Genoma
16.
Antibiotics (Basel) ; 10(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34827260

RESUMEN

Salmonella enterica subsp. houtenae (S. houtenae) is a common subspecies in reptiles and has been implicated as a source of serious and life-threatening diseases in humans. Although occurrence and significance of S. houtenae infections have been extensively studied, the genetic features of S. houtenae have remained unknown due to a lack of available high-quality genome sequences. We obtained the complete genome sequence of S. houtenae 45:g,z51:- strain 20-369 isolated from multiple abdominal abscesses of an African fat-tailed gecko (Hemitheconyx caudicinctus) using Nanopore and Illumina sequencing technologies and generated the 4.65Mbp complete genome sequence of the S. houtenae str. 20-369. We annotated and analyzed the genome sequence with the aim to gain a deeper understanding of the genome characteristics associated with its pathogenicity. Overall, this study found several interesting genomic features such as pseudogene formation, virulence gene profile, and novel genomic islands. This study provides basis for an understanding possible genetic mechanism underlying pathogenicity of S. houtenae 45:g,z51:- as well as a high-quality genome reference for future comparison studies.

17.
Virus Res ; 305: 198563, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34530046

RESUMEN

This study compared the lethality of severe acute respiratory syndrome coronavirus 2 variants belonging to the S, V, L, G, GH, and GR clades using K18-human angiotensin-converting enzyme 2 heterozygous mice. To estimate the 50% lethal dose (LD50) of each variant, increasing viral loads (100-104 plaque-forming units [PFU]) were administered intranasally. Mouse weight and survival were monitored for 14 days. The LD50 of the GH and GR clades was significantly lower than that of other clades at 50 PFU. These findings suggest that the GH and GR clades, which are prevalent worldwide, are more virulent than the other clades.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/mortalidad , Receptores Virales/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Carga Viral/genética , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Secuencia de Bases , Peso Corporal , COVID-19/patología , COVID-19/virología , Chlorocebus aethiops , Expresión Génica , Humanos , Dosificación Letal Mediana , Masculino , Ratones , Ratones Transgénicos , Filogenia , Receptores Virales/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/metabolismo , Índice de Severidad de la Enfermedad , Análisis de Supervivencia , Transgenes , Células Vero , Ensayo de Placa Viral , Virulencia
18.
Mitochondrial DNA B Resour ; 6(8): 2402-2405, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34350351

RESUMEN

Haemaphysalis longicornis (Ixodida: Ixodidae), the Asian longhorned tick, which is native to temperate East Asia, has been recently detected in the northeastern region of the United States, drawing concerns about its potential impact on the US animal and public health sectors. Knowledge about the genetic features of H. longicornis found in the US is limited. Therefore, we sequenced the complete mitochondrial genome (mt-genome) from two H. longicornis ticks recently collected in the State of New York, USA, in 2020. These ticks were morphologically identified and tested for tick-borne pathogens at the Connecticut Veterinary Medical Diagnostic Laboratory (Storrs, CT). The mt-genome was 14,694 bp in length and encoded 37 genes, including 13 protein-coding genes, 22 transfer RNAs, and two ribosomal RNAs. Phylogenetic analysis showed that the mt-genome clustered with those of other H. longicornis identified in China. The mt-genome sequence was 99.7% identical to a H. longicornis mt-genome (GenBank: MK439888) collected in China. The cox1 gene haplotype in these ticks belonged to the H1 type, which is the dominant haplotype present in central NJ and Staten Island, NY. The complete mt-genome data are needed to provide insights into genetic changes and phylogenetic studies of H. longicornis ticks.

19.
Neuron ; 109(14): 2275-2291.e8, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34133945

RESUMEN

C9orf72 repeat expansions cause inherited amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD) and result in both loss of C9orf72 protein expression and production of potentially toxic RNA and dipeptide repeat proteins. In addition to ALS/FTD, C9orf72 repeat expansions have been reported in a broad array of neurodegenerative syndromes, including Alzheimer's disease. Here we show that C9orf72 deficiency promotes a change in the homeostatic signature in microglia and a transition to an inflammatory state characterized by an enhanced type I IFN signature. Furthermore, C9orf72-depleted microglia trigger age-dependent neuronal defects, in particular enhanced cortical synaptic pruning, leading to altered learning and memory behaviors in mice. Interestingly, C9orf72-deficient microglia promote enhanced synapse loss and neuronal deficits in a mouse model of amyloid accumulation while paradoxically improving plaque clearance. These findings suggest that altered microglial function due to decreased C9orf72 expression directly contributes to neurodegeneration in repeat expansion carriers independent of gain-of-function toxicities.


Asunto(s)
Envejecimiento/metabolismo , Amiloide/metabolismo , Proteína C9orf72/metabolismo , Microglía/metabolismo , Sinapsis/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Amiloide/genética , Animales , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Sinapsis/patología
20.
Res Vet Sci ; 138: 125-136, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34139624

RESUMEN

Salmonella enterica subspecies diarizonae serovar 61:(k):1, 5, (7) (sheep associated S. diarizonae, SASd) is the most common Salmonella serotype identified in sheep flocks. Despite the involvement with animal and human infections, there is limited information regarding virulence profiles of SASds and their antibiotic resistance gene complement, particularly for those circulating in the U.S. In this study, we genetically characterized three SASds, 20-265, 20-269, and 20-312, isolated from sheep placental tissues during an abortion storm affecting a flock in Connecticut during 2020. SASds were the only bacteria isolated from analyzed sheep tissues. The isolates were sensitive to all the antibiotics tested, but all these SASd isolates carry the aminoglycoside resistance gene, aac(6')-Iaa, and a chromosomal substitution in the parC gene. The proportion of pseudogenes (5.3-5.5%) was similar among the isolates, and these SASds carry IncX1 type plasmids. Comparing with the SASds isolates from Enterobase, the three isolates showed an identical genomic virulence profile carrying virulence genes in the conserved set of other SASd isolates except for steC, iagB, iacP, sseI, and slrP genes. In the SNP-based phylogenetic analysis, SASd sequences were grouped into group A-C, and the group C was further subdivided into subgroup C1-C6. The three isolates clustered with other SASd isolates from the U.S. and Canada in subgroup C6. SASd isolates in the identical phylogenetic groups tended to have similar geographical origin. The results of our study did not provide conclusive evidence about which are the genetic traits that trigger SASds to become virulent in sheep, but our data will provide a point for comparative studies of this Salmonella serovar.


Asunto(s)
Aborto Veterinario/microbiología , Salmonelosis Animal/microbiología , Salmonella/genética , Enfermedades de las Ovejas/microbiología , Ovinos/microbiología , Aborto Veterinario/epidemiología , Animales , Farmacorresistencia Bacteriana/genética , Femenino , Humanos , Filogenia , Placenta/microbiología , Plásmidos/genética , Polimorfismo de Nucleótido Simple/genética , Embarazo , Salmonella/inmunología , Salmonella/aislamiento & purificación , Salmonella/patogenicidad , Salmonelosis Animal/epidemiología , Serogrupo , Enfermedades de las Ovejas/epidemiología , Estados Unidos/epidemiología , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...